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Al Application to Earthquake Engineering

Earthquake Engineering
Structural Dynamics

Earthquake Engdineering
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Review paper on EQ engineering

w remote sensing
a

Review paper
Deep Learning for Earthquake Disaster Assessment:
Objects, Data, Models, Stages, Challenges, and

Opportunities

Jing Jia andWenjie Ye*
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Structural Health Monitoring

Large-scale structural health monitoring using composite recurrent
neural networks and grid environments
By Kareem A. Eltouny Xiao Liang

The framework relies on a 5D, time dependent grid
environment and a novel spatiotemporal composite
autoencoder network. This network is a hybrid of
autoencoder convolutional neural networks

and long short-term memory networks. A 10-story, 10-
bay, numerical structure is used to evaluate the proposed
framework damage diagnosis capabilities. The framework
was successful in diagnosing the structure health state with
average accuracies of 93% and 85% for damage detection
and localization, respectively.

SGH
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Composite autoencoder architecture
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Motivation

understanding of machine learning

m C Conventional
=N B

Data

Program

Black bo
—

) Machine Rule

e Learning

Difference between traditional approach and ML
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Basics in ML and DL

Deterministic model

y=f(x0)

xeX,yeY, and 6=1{6,--0,}
Probabilistic model

Generative model distribution

p(x,;0)

Discriminative model distribution

p(y]x:6)




Summary of model functions and distribution

Method Model function/Distribution
- Linear regression f(xw)=w'x
fitting Nonlinear regression f(x w)=p(w,x)
Perception f(X;W):¢(WT’x)
Artificial Feed-forward neural network [ () =0, (Wyp, (W) ) -+
neural Recurrent neural network (0) ( (t-1) )
.W = .
networks Boltzmann machine f(x ’ ) # Wf(x ’W) 1 s
p(v; Q)ZEZhe )
Craoical Bayesian network p(s)=]1p(s:]m:0) . .
B Hidden Markov model ¢ p(V,0)=Hp(V(’) V(H))HP(O(’) V(l))
t=1 t=1
Kernel density estimation p(x|y_c)_M LK (x=") #NN.
Kernel ; c p(x‘y = C) =
methods K-nearest neighbor M k
Support vector machine f(x)=Y 7" (x,x")+w, )
Gaussian Process m=1 p(y‘x)=N[I€TK_1y;iZ—/€TK_11€']

SGH
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Regression

Y=f(X,/5)

The general relationship between independent variables X , dependent variables Y,
and some unknown parameter IB

Curve fitting results in an optimization problem.
The optimization can be mathematically framed as solving the linear system of equations

Ax=Db
A simple solution for this linear problem uses the Moore-Penrose pseudo-inverse AAJr
x=A"b

SGH 16



Linear Prediction

After training

and validation

In matrix form

\t

T i

Given Data
2 X * Xy

[ ] [ ] o [ ] [ )

[ ] a o o [ ] [ ]
\_tn _ _‘xnl * ¢ 'xnd

Feature vector

W /yeR”x1

~

prediction
I yrJ
Jj=1 Given d
= XIB X e Rnxd lven data
A = R4 parameter
- -

. |Optimization » Y prediet = .

prediction
B

K  “new,d |

Learnable
parameter  scH

T . e e
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MSE cost function for Linear regression model

MSE(X, %,) = iZ(eTx@ — W) )2

m

Normal Equation to find the value of 6 that minimizes the cost function
A —1
T T
0=(X"X) X't

X b =np.c_[np.ones((100, 1)), X] # add x0 = 1 to each instance

theta best = np.linalg.inv(X _b.T.dot(X _b)).dot(X b.T).dot(y)
L hoxtt

X+ = vyx+ty? Singular Value Decomposition

SGH
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Matrix for Optimization

Overdetermined Problem 1 X _ <t

Zero solution for A A

b

, Solve for weight
given data or operator
Model terms Loading Outcomes Target
[ ¢] T aven

solve

Underdetermined Problem

Too many solution for A [ 1 ~
A ] |n i b
| x || L

Feature: dimension

SGH 19



Solution X

AX=b  Non-square A

How to deal with non-square matrices -> SVD, PCA,.....

Overdetermined, n>m (tall skinny A) Underdetermined, n<m (short fat A)
[ b
Many data . U - A = H
X
- X
Zero solution X for given b Too many solution x for given b
min”Ai(—b”2 min”i”Z such that Ax=b
Optimization Optimization
argmin(”Ax -b|, + ﬂg(x)) argmin g (x) subject to |[Ax—bl||, <&

H 20



Over-determined Systems

N T,
1 A

Zero solution X for given b \ \ \

in[|A% - - -
mmHAx sz €k>\ (Lj\ 1 i

The minimum-norm point on a line in different Ip norm

x=argmin||Ax-b|, + 4, x| + 4, |x], From Fig 3.10, p 110 in Ref

Optimization

I norm Lasso Ridge
\ 1

|

Least absolute shrinkage and selection operator

SGH 21



Under-determined Systems

-

X

Too many solution x for given b

min ||i||p subject to AX=b

Optimization

T

N

v

|7

min (ﬂl ||x||1 + A, ||x||2) subject to ||Ax—b||2 <ég

SGH
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Diagonalization (Square matrix)

éyzj,y [A]:E j =|A-21|=0 [A]:{fl ﬂ =|A-21|=0
Eigen vector i i i i
Eigen value ?1:{1},&:6 sz{_J,@:2 ?1:{_1},1,:4 szL}/IZ:Z
A=XAX"" { b} o V _b}
A= =>A =
c d ad —cb|—c a
XT'AX =A




Rectangular matrix decomposition(SVD)

) V*
A = U Ut
0
U >
)3 y
U

m
_ ® % % *
A= E o,uv, =ouv, +o,u,v,+---+o, u, v,
k=1




Image Compression and

Compressed Sensing

194|147 108 90 | 98 | 84 | 96 | 91 101
206 |188|195|207| 213|163 (123|116 | 128
183 |18@ 205 224 234 188|122 134 147
189|201 227 | 229|232 200 |125| 127 135
241|237 244|232 | 226|202 |116| 125|126
2547 241|239 | 230|217 | 196 | 102|103 99
255-249.231 227214 203 |116| 95 | 91
231|208 200|207 | 201 |200|121| 95 | 95

140120 115125 127|143 118| 92 | 91

121108 109122 121|134 106| 86 97

233/188/137| 96 | 9@ | 95 | 63 | 73 | 73 | 82

237 |202 159 120|105 11| 88 |107 |112 121 109

" 1226191 147|110 | 101|112 | 98 |123| 110|119 |142 | 131
221191 176|182 203 | 214|169 | 144|133 |145 155 | 122

185 160 | 161(184 | 205 223|186 137|147 161|140 115

181 174 189|207 206 215 194 136|142|151 133 | &7

246|237 | 237|231 | 208 | 206 | 192 122|143 144 122 74

254 254 |241|224 199 192|181 99 |122|117 187 | 74
239 | 248 232|207 187 182 184 110|114 |110 113 74
82

193 | 215 193|167 | 158 | 164 | 181 | 114|112 |111 | 105
% 113 119 | 11@|111|113|123 135|120 108|106 | 113

., 93 97 01 (1e3|1@7 111 122 112|104 |114



Image Compression

r =5, 0.57% storage

m
XZZ o.wv, =ouwv, +to,u,v,+---+o.u_v_

k=1
R NS .o
*

Image compression truncating the SVD at various rank r
Original image resolution is 2000 X 1500

From Fig 1.3, p 110 in Ref.1
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2D Fourier Transformation for Image

f(a)) F f(x) _[ f(x)e ™ dx » J}(u,v) = F(f(x,y)) = T f(x,y)e_iw(””vy)dxdy

f(x)=F" (f(a))) = i T f(co) e"dw f(x,y)=F" (f(u,v)) = i T f(u,v)eiw(”x+vy)dudv

FFT all rows FFT all columns 2D FFT

Image compression
truncating Fourier
Transformation

Original image
resolution is 2000 X
1500

From Fig 1.3, p 110 in Ref1 - .



Full image 5.0% of FFT Noisy image Noisy FFT

Filtered FFT




Compressed sensing

©

y C v s Schematic of
1 a d measurement in
— F u; " | compressed
K u | sensing
- m | framework
measurement Measurement matrix ? From Fig 3.4, p
| 103 in Ret.
y =Cx -
= =
=CWs =0s .
YT u
S = arg min ||s||O subject to y=CWs :
Orthonormal basis Sparse vector

SGH 29



Fourier Basis; Orthonormal basis

The Fourier basis — Tutorials on imaging, computing
and mathematics (matthew-brett.github.io)

SGH
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Solutions dependent on norm selection

HEEE EEECEEEE B EEEEENEE EECE BN

(b) Least-squares s (¢3)

[ TTTTTTTTTTTT I

=CY¥s

subjectto y

0

Is

N

§ = arg min

(a) Sparse s (¢1)

31

From Fig 3.5, p 103 in Ref.1
SGH



Measurements, y Sparse coefficients, s Reconstructed image, x
. . v " . % R - B 'I-a-‘:-‘—'—'—;—: : ‘ — —
.

Measurement Sparse coefficient Reconstructed image
p~O(KIn(n/K))=kKn(n/K)

~ Q% 3 x * =
p ~3%*0.05%1024*768*In(20) = 353,390 K —0.05%1024 %768

; SGH 32
Pixel : n



Measurement matrices

(a) Random single pixel (b) Gaussian random
n " -
u =
-
min n
]
(c) Bernoulli random (d) Sparse random

. -

A u
Examples of good random measurement matrices
From Fig 3.11, p 112 in Ref.1

SGH 33




Data-Driven Machine Learning

Small data Some data Big data

) o
NoDate Physics

|

Finding DEs; supervised learning




Agenda for Engineering with Al

PHYSICS INFORMED MACHINE LEARNING

 Derivation of Governing Equations
Data-driven M/L

 Solution of Governing Equations (PDE, DE)
Physics-informed M/L

PHYSICAL MODELS FROM DATA via OPTIMIZATION

- How to optimize by a few data

« Data-driven M/L -> to find linear operator

SGH



Paradigm shift

Program

m C Conventional
| Data B

Data

) Machine Rule

- Learning

Combination between traditional approach and ML

SGH
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Application area of Data-driven ML

ML for new material

Fourth Paradigm

eeXx
AXDO
Proportioning
Qe
[ X .
. Second Paradigm
Processing .
Theoretical
First Paradigm science
Em.plrlcal Laws of kinetics,
science thermodynamics,
e e mechanics
Trial-and-error

experiments

Third Paradigm
Computational
science
Density-functional
theory, molecular

dynamics simulation

https://media.springernature.com/full/springer-
static/image/art%3A10.1038%2Fs41524-022-00810-
x/MediaObjects/41524_2022_810_Fig1_HTML.png?as=webp

Data-driven
science
Data mining,
artificial intelligence,
machine learning

Fluid mechanics

1. Problem (e.g. model reduction)

™

) i

2. Data X 3

-
. Architecture f(X,0) =f;°f,f;
X

t
£:2.0)| —

. Loss Z(0,X)

5. Optimize @* = argmin,Z(0,X)
Applying machine learning to study fluid mechanics
Invited Review

Open access
Published: 04 January 2022

Volume 37, pages 1718-1726, (2021

SGH 37



Dynamic system

Linear dynamics and Spectral Decomposition

d
—X(0) = (x(1).1: 8) Dyeax ()= (n)

T dt
Vector field The dynamics are entirely characterized by N
the eigenvalues of A, given by the spectral decomposition

State of system

AT =TA
A =TAT"
x(t, +1)=Te™T'x(1,)

Set of parameters

Transformation of coordinate gives decoupled system
z=T'x

d

—7=A7Z
SGH t 38




Dynamic Mode Decomposition

] ] ]
X= x(tl) X(l‘z) o e X(tm)

pseudo-

X’ ~ AX inverse .

The best-fit operator A — arg min HX’ — AXHF — X'X'
A



Steps for DMD

Step 1. Compute the singular value decomposition of X

X ~ UZV* reduced singular vector, conjugate transpose
Step 2. The reduced-order matrix A

A=XVX'U = A=UAU=UXVX"

A ()
Step 3. The spectral decomposition of the reduced matrix A { 1 . : ,
AW = WA A® =(X'VE'U")(XVE'W
Step 4. The high-dimensional DMD modes are JEVIEOR Y \ < |
reconstructed = X' VX AW A
©=X'VX'W - X'VE'WA

= DA



Algorithm 1 Exact DMD [4]

Input: Data matrix X, shifted data matrix X’, and target rank r.
Output: DMD spectrum A and modes ®.
1: procedure DMD (X, X', r)

2: U, X, V]« SVD(X, r) > Truncated r-rank SVD of X.
3:  A<U*Xx'vz! > Low-rank approximation of A.
4. [W,A]<EIG(A) > Eigendecomposition of A.
5. ®<X'VEI'W > DMD modes of A.

6: end procedure
Note that if 4, = 0, then ¢p; = Uw;, for step 5. In the original DMD algorithm
[57] all modes are computed as ¢p; = Uw;.

SGH 41



Experiment Collect Data

A=X'XT

-

Regression

DMD

a) Diagnostics

A past future

S — &
g | W &
£ ) >3
g OI% 4 3,
— 1 m >t
b) Future state prediction
¥ | Xk+1=AX;

Overview of DMD illustrated on the fluid flow past a circular cylin-

der at Reynolds number 100. From Ref. 1

SGH
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Sparse Identification of Non-linear Dynamics

(1)1 (x(1).1:5) X-[x) 2(0) - 2]

We seek to approximate f by a generalized linear model .
P X=|x() x(z,) -~ - x(z,)
1 2 m
f(x)~2 0, (x)6=0(x)8 [ ]
k=1
A library of candidate nonlinear function may be constructed from the data in X

O(X)=[1 X X*/ . X’ ... sin(X) -]

X=0(X)=
A parsimonious model will provide an accurate model fit with as few terms as possible in =,

1

g, = argfmin”Xk —(BTX)Q;( +AE,

SG
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Full Slmulatlon

t = o(y—uz
y = z(p—2)
z = xy-— B=z.

-

1z yzayzzyPyzta® 25

8
=,

¥
1 J
Il

X O(X)
X=0(X)E
O(X)=[1 X X’

SGH

(1

&1 &2 &3

lxxt
lxy\'
lxz!
'YY.

'zzzzz' [

JSKci

Identlﬁed System

'2i 1°
[-9.9996]
[ 9.9998]
0]
0]
0]
0]
0]

—_

0]

'xi 2"
[27.9980]
[-0.9997]
[ 0]
[ 0]
[ 0]
[-0.9999]
[ 0]

0]

sin ( X)

44




Discovering Partial Differential Equations

A major extension of SINDy modeling framework generalized the library to include partial derivative,
enabling the identification of partial differential equation.

. 2
@(Y,Q)—[l Y Y> - Q0 -~ Y. YT ]
Spatial time-series T
A known potential or magnitude of complex data

Y, =®(Y,Q)§

= arg;nin”(a(Y,Q)Q; ~Y|[ +ex(0(Y,Q))[&

0



la. Data Collection . .
— 1b. Build Nonlinear
/‘@ Library of Data and
2\ ) Derivatives
s| ¢ |
<
Q s N S 33%‘5
= 3| = |-3=:=253 HIE wy = O(w, u,v)€
o
I 2. Sub le Dat w; = O(w,u, v)€ 2b. Compressed library
S d. oubsampile Data . Cwy = C@(w’ u, 'U)g
..d ====-----. .
Qu% Sampling
z = [RERARARNENE _
8, T O O T C —_
£
o DT T Y O NN
U N 0 N N N O R

lc. Solve Sparse
Regression

a?‘ggan@& —will3 + AllElo

\4

d. Identified Dynamics

w + 0.9931uw, + 0.9910vw,
= 0.0099wzz + 0.0099w,,

Compare to True
Navier Stokes (Re = 100)

wt+ (u-Vw= iv%

Re

2c. Solve Compressed
Sparse Regression
gig Pun|ces = Cuoel3 + A€o

Data-driven discovery of coordinates and governing equations
Kathleen Champion1 , Bethany Lusch?2, J. Nathan Kutz1, Steven L. Brunton

SGH
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reconstruction loss

SINDy loss in x

Y
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regularization

23 _&18283

Schematic of the SINDy autoencoder method for simultaneous discovery of coordinates and

parsimonious dynamics

https://www.pnas.org/cms/10.1073/pnas.1906995116/asset/71b09e6c-9d0f-4a9f-
b1e5-9cc8d8375808/assets/graphic/pnas.1906995116fig01.jpeg
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Application to structural vibration

Data-driven experimental modal analysis by

The application of Dynamic Mode : .
Decomposition(DMD) to the extraction of modal Dymamie [Weee Desaim sesiien
tp P hanical ¢ . Akira Saito*, Tomohiro Kuno
propgr €5 ot linear mec amca SYStEms, 1.€., https://doi.org/10.1016/j.jsv.2020.115434 0022-
expe”mental modal aﬂa|ySIS (EMA)- 460X/©2020Elsevier Ltd. All rights reserved.
Journal of Sound and Vibration
[ - — = = A P e
(a) Test specimen
Test specimen ‘ % W é
/ Cla.mpedo:<l ?fu —g- | W
% “ W g O e MM A
SGH 48

(b) Experimental setup
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Application of SINdy to Structural Dynamics

Sparse structural system
identification method for
nonlinear dynamic
systems with
hysteresis/inelastic
behavior

By Zhilu Lai, Satish
Nagarajaiah

Mechanical Systems and Signal Processing
117 (2019) 813-842
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S
ixu 3 xu = an
| %, %, % |
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I X5 %% |

constant Linear basis Nonlinear basis Forcing
term  function Z function term
/_A_\ " —— -
X)X, XX, 1 X, Xpee R Z8 - N((Z),N,(Z),-- U _ __a.l &'31
®
®
[ ]
Z O(Z) =

(State Space Matrix) (Library Matrix)

g

Identified Equations (Sparse Model)
- ‘—'Iasso(G(z ))

z= .fspm-se(z

(Sparse Solution)

v
I

;S

Fig. 2. Schematic procedure of sparse identification to nonlinear elastic structural systems.
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Steps in SINDy for Dynamics

. Data Preparation

Obtain the measured data x;(t),X;(t) and X, (t) at time t;, t3, ..., tn and compute x;(t), and a;(t)

. Assemble Z, and Z,

Depending on the choice of types of nonlinearities (nonlinear elastic or nonlinear inelastic), Z, and Z, are constructed
through Eq. (30) and Eq. (32) for nonlinear inelastic behavior (or Eq. (4) for nonlinear elastic).

. Construct Library Matrix

Library matrix is constructed with only measured data, according to the choice of types of basis functions used to repre-
sent different nonlinearities as in Eq. (35) for nonlinear inelastic or Eq. (6) for nonlinear elastic.

. Sparse Feature/Model Extraction (training data)

With a certain regularized parameter 4, solve the ¢; regularized regression problem (Eq. (26) for nonlinear inelastic or Eq.
(8) for nonlinear elastic) by LASSO to get sparse model parameters and its corresponding AIC value.

. Model Selection

Repeat step 2 to step 4 using various values of 4 and form an AIC curve. Pick the optimal 4 where the AIC curve has sig-
nificant slope change.

. Sparse Feature/Model Evaluation (testing data) Testing ground motion as input to the sparse model to verify the gen-
eralization ability of the model. Note: testing data is not used in training as dictated by cross validation.
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Physics informed Neural Network
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Why SciML

» Scientific machine learning is an emerging discipline within
the data science community. SciML seeks to address
domain-specific data challenges and extract insights from
scilenjcific data sets through innovative methodological
solution.

 SciML draws on tools from both machine learning and
scientific computing to develop new methods for scalable,
domain-aware, robust, reliable, and interpretable learning
and data analysis, and will be critical in driving the next
wave of data-driven scientific discovery in the physical
and engineering sciences.
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Behavior of system and Optimization objective

> F(u@)() (ux@) 0, xeQ

Partial differential equation:  F(u;0)(x

Initial conditions: I(u;0)(x,2,)=0
0

~
[l

Boundary conditions:  B(u;6)(x,?

Optimization objective: I}EJ?L(f D) + Q(g)

ZW (x)I

r i=1 l i=1
Residual loss Initial condition

3B, H%—ZH (=)

b i=1
Boundary condition Regular data loss



Loss Reweighting

7 max {VWLF (wn )}

VL (w,) . & Tr(K)
K:(K; ij ho Tr(Ky,)
du,(x;) du,(x’ _ Tr(K)
el
(Ku), =<d”;fff)»d””;ﬁ(x">>
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Advantage and limitation

e Example L
P Advantages Limitation
* Mesh-free - Computational
 Can jointly sole cost often high
forward an(gl « Can be hard to
nverse problems , wiize
* Mostly . Challenging t
unsupervised alenging to
C scale to high-
« Can perform well .
 Boundary loss. for high- frequency, multi-
HO o) 2 dimensional PDEs ~ scale problems

A & d’ d

Physics loss

from ETH 401-4656-21L Deep learning in Scientific computing 2023



Neural operator

DeepONets Caltech
Physical Informed DeepONets Group
Graph Operator Networks * Zongyi L

. Anima Anandkumar
Fourier Operator Networks Andrew Stuart

PINO :
Not vector-to-vector mapping

Brown

University
Lu Lu
Pengzhan Jin

George Em
Karniadakis

Function-to-function mapping



How to learn function space

Take discrete measurement of functional data and use standard ML models
on the finite dimensional discretization

R”
| l Uuc

f:R" > R" ! selt
e.g. MLP. CNN, RNN lll lHH“

?




DeepO

Net

Branch net

X > Y

ey | ‘%é

Rm

{'Bk (u)}izl = Zi:lﬁk (u)z-k (y)

W@\/\/\,RP

Approximation J

) o),

Lu, L,

Jin, P, Pang, G, et al.: Learning nonlinear operators via DeepONet based on

the universal approximation theorem of operators. Nat. Mac. Intell. 3(3), 218-229
(2021). https://doi.org/10.1038/s42256-021-00302-
5, www.nature.com/articles/s42256-021-00302-5
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Goal of Neural Operator

To approximate a latent operator, I.e,
a mapping between parameters and the state variable

~S

G, (0)(x)-G(0)(x)

min
welW

DeepONets
G, ( = b, +Zb

Trunk network

Branch network



Neural operator

u=Q(K,c0,0---0,0K,)Pv

P Q are local network (encoder, decoder)

P lifts the input to a high dimensional channel space.
Q projects the representation back to the original space.



Neural operator architecture schemat

.

The input function a is passed to a pointwise lifting operator P that is followed by T layers of integral
operators and pointwise non-linearity operator O. In the end, the pointwise projection
operator Q outputs the function w.
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Operator Learn Architecture

ac

a~Zak¢k é > < ?{/z {/Z —)Zu o (x

& a
a
k > uj
Architecture Encoder Approximator Reconstructor
Spectral Neural Coeffs DNNs Fourier/Chebychev basis
Operator
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2D steady Darcy tlow equation

PHYSICS-INFORMED
NEURAL OPERATOR
FOR LEARNING PARTIAL
DIFFERENTIAL
EQUATIONS

By Anonymous authors

Under review as a conference paper
at ICLR 2022
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Figure 3: Darcy inverse problem
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Fourier Layer

Use convolution as integral operator
and implement with Fourier transform

(K (as;¢)v,) Ik x,3,a(x),a();4)v. (»)dy
(K(#)v,)=F " (R,*(F7,))(x)



Fourier layer

Courier transform
Inear transform
nverse Fourier transform

v

><

v

- >

sy
-

b

v

v

v

SGH
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Fourier layer

70

. .

SGH
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-
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W, (x)+ [k, (x.v.a(x).a(y))v, (»)v. (dv)

S

(%)

The linear transform W outside keep the track of the location information (x)
and non-periodic boundary



Kernelization

Polynomial kernel example

4 Data encoding feature map Q: R* =R’
/\ G:X,X, = Z,,2,,2,
1 4(® 2 2
- where z, = \/Exlxz Z; =X 3 =X
e
— Q) k(x,x')=(@(x),0(x'))
k(x,z)= (XTZ)2 =(x,z, + x,2, )2
kernel | () =X,z +2X,2,X,2, + X, 2,
k (6100 :
¢(x).0(y
o RN
, 2
Z,

= ¢(x) 4(2)



Kernel Trick

« Computation in explicit, high-dimensional feature maps are expensive

« For some feature maps, we can, however, compute distances between point cheaply

« Without explicitly constructing the high-dimensional space at all

« Example: quadratic feature map for X = (xl,- . -,xp) ‘

p _dimension = 3p dimension
2 2
(D(x) = (xl,- XX, -,xp,\/lexz,- : -,\/2xp_1xp)

« A kernel function exists for this feature map to compute dot products
2
L (xl.,xj):CI)(xl.)-CD(xj):xi ‘X +(xl. -xj)

« Skip computation of cI)(x ) and q)(xj) and compute k(xi,xj) directly

i

SGH
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T

Kernel Function k(Xi,Xj)=¢(XZ.) ¢(Xj)

“Gram Matrix”

K =

C

¢(X2)T¢(X1) ¢(X2) ¢(X2) )
¢(XN)T¢(X1) ¢(XN)T¢(X2) ) ¢(XN)T¢(XN)
k(xl,xl) k(xl,xz) . k(xl,xN)

k(xz,xl) k(xz,xz) . .

_k(XN xl) k(xN,xz) k(xN,xN)_




)= S wd(x

training New
data data k(

e ol
Y ps (X2 p,0) exp(Zwtke X, X, j
-

kernel Training
data

Xt,X)

Exponential ensures product separable

SGH

New data

e
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Noiseless GP regression

We observe a training set D ={(xf,),i=1:N| where f; = f(x,)

Given a test set X* of size N*x D, we want to predict the function output f*.

{f},vN[[ﬂj{K(X,X) K(X,X*)D K(X,X):NxN

L, w )| K(X.,X) K(X,,X.) K(X.X,):NxN,
k(o) =0t exp| —osla-wy | KUHINAN

p(f|X..X.f)=N(f|p..2,)

po=p(X.)+ KK (f-p(X))
r =K, -K/K'K,

SGH
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Noisy GP regression

y=f(X)+e, Whereg~N(0,g§)

P(Y|X)=Ip(ylf,X)p(f|X)df
p(f|X)=N(f|0,K)
p(¥[f)=TLN (2] /.07)

cov|y|X|=K+0ol1, 2K,

{f}~N[0,{Ky K, D p(f|X..X.f)=N(f|p..Z,)

T
T -K.-K'K'K,



Concluding remark: Takeaway (by Zongyi Li @caltech)

1. Data-driven ML: learn the equation

2. Neural operator-learning: parametrize the mesh-
Invariant operator

3. Fourier method: efficient for continuous inputs and
outputs

4. SciIML: accurate than other deep learning method,
faster than conventional solvers

5. Future: scale up for engineering applications
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Prerequisite

_Linear Algebra
Probability

Data Science
nformation Theory
Programing
Coding (Python.....)
Problem Setting
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ML Process

Data collection —>| Feature design [—* Modeltraining —> Model validation

Training set

Data cleaning
Normalization: Feature Scaling
Translation of center

SGH



Math Skills for Machine Learning

Multivariable
Calculus

Statistics
& Probability

Machine
Learning

Linear Algebra

Optimization
Method
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